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Background
• Events of 9/11 and subsequent WTC investigation 

have highlighted the importance of fire resistive 
materials (FRMs) in their role of limiting the 
temperature rise of structural steel

• R&D project on FRMs included in the Safety of 
Threatened Buildings program
– Joint between 861.05 and 861.06 (Inorganic and 

Polymeric Materials)
– Objective is to apply materials science to 

understanding and improving FRM performance
• Develop linkages between microstructure and performance 

properties
– The two most critical performance properties are 

adhesion/cohesion (does it stay on/up?) and 
thermal conductivity (does it keep the steel cool?)
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Types of Materials
• Spray-applied FRMs (thick --- 25 mm to 50 mm)

– Low density products (200 to 350 kg/m3)
• Mineral fibers with portland cement binder

– Mixed dry with water applied at the spray nozzle
• Gypsum-based with lightweight fillers

– Vermiculite or expanded polystyrene beads as fillers
– Mixed with water and then sprayed

– Medium and high density products (400 to 700 kg/m3)
• Generally portland cement-based

• Thin film intumescents
– Organics that expand up to 40 X at around 200 oC
– Inorganics, typically with less expansion

• Rigid board products, wraps, etc.
– Calcium silicate-based binder
– Blended gypsum/portland cement binders



Focus: Test Method Development
• FRMs are currently characterized by room temperature

properties such as pull-off adhesion/cohesion strength, 
density, and thermal conductivity

• However, it is really the values of these properties at 
high temperatures which will determine the 
performance of FRMs during a fire exposure

• Adequate test methods for property quantification at high 
temperatures do not exist or are inadequate for FRMs so 
our starting point and current focus has been 
development of high temperature test methods

Marshmallows are sticky and
expand at high temperatures;
Potential FRM???



Thermal Conductivity at High Temperatures
• How to measure it?

– ASTM C1113: Hot wire method
• Difficult to maintain contact with porous FRM specimens
• No information on influences of reactions, phase changes, etc.

– High-temperature guarded hot plate 
• Steady-state method (no info on reactions, etc.)
• State-of-the art facility under construction in BFRL at NIST

– Transient plane source method (Hot Disk®)
• Unit with furnace (test up to 700 oC) at BFRL

– Slug calorimeter (designed and built at BFRL in 2004 
and  used extensively since then)

• Similar in principle to the Cenco-Fitch Apparatus used in 
ASTM D2214 for estimating the thermal conductivity of leather 
(first published by Fitch in 1935)

• Using multiple heating/cooling scans provides valuable 
information on the influences of reactions, etc.



Slug Calorimeter Technique
• Sandwich specimen consisting of two “slabs” of FRM 

covering two sides of a steel slug of known mass 
and heat capacity

• Monitor slug temperature change as entire sandwich 
is exposed to a heating/cooling cycle

• Calculate effective thermal conductivity during 
multiple heating/cooling cycles

• For detailed information see: Bentz, D.P., Flynn, 
D.R., Kim, J.H., and Zarr, R.R., “A Slug Calorimeter 
for Evaluating the Thermal Performance of Fire 
Resistive Materials,” accepted by Fire and Materials, 
2005, available in electronic monograph at 
http://ciks.cbt.nist.gov/garbocz/slugpaper1.

http://ciks.cbt.nist.gov/garbocz/slugpaper1
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Raw Data for Exposure of Intumescents

0

150

300

450

600

750

900

0 60 120 180 240 300 360
Time (min)

Te
m

pe
ra

tu
re

 (C
)

Furnace - Int. A Furnace - Int. B

Slug - Int. A Slug - Int. B

Time for central slug to reach 538 oC varied from 52 
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Determination of Effective k
(courtesy of Dan Flynn, BFRL guest researcher)

∂2T/ ∂z2=(1/α)(∂T/∂t)
With B.C.: T(0,t)=Ft, k(∂T/∂z) +H(∂T/∂t)=0

α is the thermal diffusivity
H is the thermal capacity of one half of the slug plate

F is the rate of temperature increase/decrease of the slug

Solution: T(z,t)=F[t-(H+lC)z/k+Cz2/(2k)]
l is the specimen thickness, C its volumetric heat capacity

ΔT = (Fl/k)*[H+lC/2]
ΔT is the temperature difference across the specimen

k=Fl(H+lC/2)/ΔT=Fl(MScp
S+MFRMcp

FRM)/2AΔT



Slug Calorimeter Results: Fumed Silica Board

-Results for (non-reactive) fumed silica board in good agreement
with previous NIST guarded hot plate (1988) measurements
-Extremely low k at all temperatures [contains an opacifier and 
nanometer-sized particles (about 10 nm)]
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Slug Calorimeter Results: FRM A

- Good agreement with previously measured values
- Good repeatability in cooling curves for different runs
- Differences between 1st and 2nd heating cycle provide valuable

information on influences of endothermic and exothermic events,
including reactions, phase changes, and mass transfer
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Slug Calorimeter Results: Comparison
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- High variability between different FRMs especially at higher T
- High T insulation boards (two lower curves) have effective k 

values significantly lower than current FRMs and exhibit minimal 
increases at higher temperatures

k from 2nd heating/cooling curves



Comparison of Time for Steel Slug 
to Reach 538 oC
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How Does Microstructure Relate to Thermal 
Conductivity?

• X-ray microtomography
– Inherently three-dimensional
– Intensity of signal based on 

x-ray transmission (local 
density) of material

– Voxels dimensions of 10 μm 
readily available

• 1 μm at specialized facilities 
(e.g., ESRF in France)

– NIST has “imaged” a variety 
of FRMs in collaboration 
with the Center for 
Quantitative Imaging at 
Pennsylvania State 
University



X-ray Microtomography of Flame-
Exposed Intumescent Coating FRM

From Center for Quantitative Imaging, Penn State Univ.



Microstructure Thermal Conductivity

• Segment 3-D microstructures into pores and 
solids (binary image)

• Extract a 200x200x200 voxel subvolume 
from each microstructure data set

• Separate and quantify volume of each “pore”
(erosion/dilation, watershed segmentation-Russ, 
1988, Acta Stereologica)

• Input segmented subvolume into a finite 
difference program to compute thermal 
conductivity (compare to measured values)



Three-Dimensional X-ray Microtomography

Three-dimensional images of isolated pores
Gypsum-based Fiber/cement-based



Thermal Conductivity Computation

-Use finite difference technique with conjugate gradient 
solver (Garboczi, 1998, NISTIR 6269)
-Put a temperature gradient across the sample and solve 
for heat flow at each node
-Compute equivalent k value for composite material

q = -kA (∂T/∂x)

Porosity: kpore

“Solid”: ksolid

q
-Need to know values for kpore and ksolid (itself microporous)

• Theory of Russell (1935) for porous media
• Theory of Loeb (1954) for radiation in spherical pores



Microstructure Modeling Results: 
Gypsum-Based Material FRM C

Complication- gypsum to anhydrite conversion
kgypsum ≈ 1.2 W/m•K      kanhydrite≈ 4.8 W/m•K (Horai, 1971)
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Microstructure Modeling Results: 
Fiber/Cement-Based Material FRM B

Complications
– Anisotropy of microstructure
– Radiation transfer through connected pores (Flynn and Gorthala, 1997)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

0 200 400 600 800 1000 1200

Temperature ( oC)

k 
(W

/m
•K

) 
Measured data

No erosions (x,y)

No erosions (z)



k vs. Porosity and Pore Size
FRM ρ

(kg/m3)
Porosity Pore

radius 
(mm)

k 
(23 oC)

[W/(m•K)]

k 
(1000 oC)
[W/(m•K)]

A-fiber 313.7 87.5 % 0.5 0.0534 0.3708

B-fiber 236.8 91.2 % 0.75 0.0460 0.5010

C-gypsum 292.4 87.2 % 0.2 0.0954 0.2618



What is the temperature 
dependence of the adhesion?

FRM

steel Shear steel
FRM

Mode 1
Mode 2



Instrument Design

Balance
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Gypsum-based material, Mode 1
Mass loss vs Temperature of the FRM
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Both Adhesive and Cohesive Failure



Intumescent Material

Cohesive failure of 
the material, but 
the steel remained 
covered.



Other current  FRM Standards:

12 Ft Deflect 1/120 or 1 inch.

•ASTM E760 (Effect of Impact)

12 Ft

Concrete

60 lb from 4 ft.

•ASTM E736 (Cohesive/Adhesive) ASTM E759 (Effect of Deflection)



Value at 
120 oC

Intumescent Sample: Peel Test Specimen 1
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Value at 
323 oC

Gypsum-based Sample: Peel Test Specimen 1
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Summary
• Slug calorimeter setup provides a low cost and efficient 

method to characterize the thermal performance of 
FRMs
– Temperature range of room temperature to 700 oC
– Influences of reactions, phase changes, and mass transfer can 

be determined by using multiple heating/cooling cycles
• 3-D microstructure of FRMs can be captured and 

quantified using x-ray microtomography
• Both total porosity (density) and pore size are critical to 

the thermal performance of FRMs
– These parameters have already been optimized for high 

temperature insulation boards, but not yet for FRMs
• Adhesion properties are significantly different at room 

temperature and elevated temperatures



Outreach and Technology Transfer
• New section of electronic monograph on FRMs

– http://ciks.cbt.nist.gov/monograph
– Separate chapters on microstructure, adhesion, and 

thermophysical properties

• BFRL/industry consortium formed 03/06
– http://ciks.cbt.nist.gov/~bentz/FRMconsortium.html
– Six industrial members each contributing $20 K
– Initial scope of 2 years

• Initiating standardization efforts for the slug calorimeter 
test method (in ASTM E37 – Thermal Measurements)
– Also serving on UL STP 263 where the first of its kind durability 

standard is being developed for FRMs

http://ciks.cbt.nist.gov/monograph
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